Using Carbon Pricing to Support Sustainable Development

Darshan Joshi

Lead Researcher, Research for Social Advancement (REFSA)

I. Carbon Pricing

The Economics

Since Industrial Revolution, fossil fuels \implies wealth

Our World in Data

GDP per capita adjusted for price changes over time (inflation) and price differences between countries – it is measured in international-\$ in 2011 prices.

Source: Vaclav Smil (2017). Energy Transitions: Global and National Perspective & BP Statistical Review of World Energy OurWorldInData.org/fossil-fuels/ * CC BY

Overuse of fossil fuels \Rightarrow rise in atmospheric CO₂

Our World in Data

Annual total CO2 emissions, by world region

Source: Carbon Dioxide Information Analysis Center (CDIAC); Global Carbon Project (GCP) Note: The difference between the global estimate and the sum of national totals is labeled "Statistical differences". OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

Which in raising global surface temperatures \Rightarrow economic damage

Fundamental economic response: put a price on the negative externality

How do we calculate the price of carbon?

- The 'social cost of carbon' (SCC):
 - I. The economic cost of an incremental ton of $CO_2e a$ per-unit tax
 - 2. SCC > 0
- Five steps to estimating SCC:

5. Discounting future damages to reflect present values

What is the SCC?

How do we enforce a price on carbon?

Carbon pricing around the world

57 initiatives already implemented

12

Price of carbon varies greatly across countries

Climate change: a global issue needs a global solution

- Whether a ton of CO₂ is emitted in Kuantan, Boston, Melbourne, or Timbuktu doesn't matter
 - Final destination: atmosphere
 - Second market failure: tragedy of the commons
 - Free access to public good: overuse
 - Example: atmosphere
- "Emissions arbitrage"
 - Where the country-level approach fails
- Long-run, first-best policy: uniform global price

II. Carbon Price-and-Rebate (CPR) in Malaysia The Policy Proposal

Scope encompasses three activities

Activity		Emissions, in <i>Mt</i> CO ₂ e	Share of Total GHG Emissions
Electricity and Heat Production		99.298	31.26%
Tra	insport	64.385	20.27%
Oil and Gas Production Processes	Petroleum Refining	8.654	2.73%
	Manufacture of Solid Fuels and Other Energy Industries	25.535	8.03%
	Fugitive Emissions from Fuels	24.923	7.84%
1	Fotal	222.794	70.14%

- I. Concurrently, encourage major players in other industries to adopt internal carbon pricing measures within CBA
- 2. Longer-term, include more subsectors within CPR scheme

By 2030, 46–71% rise in emissions

On carbon pricing rates

- First-best, long-run global price of carbon
- Future international agreement?

⁰² Until then...

- Flexibility to adopt prices gradually trending towards SCC
- Get accustomed to CPR
- LR shift to global price of carbon smoother

⁰³ Price must not be...

- Too high: political feasibility? Economic harm?
- Too low: insufficient to incentivise decarbonisation
 - π_{max}:Abate as long as MAC ≤ SCC
 - As SCC rises...

Start at RM35/tCO₂e, biennial upward revision

Carbon Pricing

A downstream per-tonne tax on electricity, transport, and oil & gas production emissions

III. CPR in Malaysia Sectoral Effects

III(a). CPR in Malaysia Electricity

Carbon pricing hastens electricity sector disruption

 Enhances the competitiveness of lower-carbon technologies by placing a price on environmental costs of fossil fuel use.

Carbon Price per tCO ₂ e		Coal	Natural Gas (CCGT)
RM35	Min	2.87	1.48
(2020/21)	Max	4.03	1.75
RM50 (2022/23)	Min	4.1	2.11
	Max	5.76	2.5
RM75	Min	6.15	3.17
(2024/25)	Max	8.64	3.74
RM110	Min	9.02	4.64
(2026/27)	Max	12.67	5.49
RM150	Min	12.3	6.33
(2028-30)	Max	17.28	7.49

*Tax in sen per kWh

*Min/max dependent on plant efficiency

Quick look: coal vs natural gas

Power Plants		Manjung 5 Coal, 1GW	Jimah East Coal, 2GW	Seberang Prai CCGT, 1.07GW	Pasir Gudang CCGT, 1.44GW	Average Cost Differential, CCGT <i>vs</i> Coal
Estimated LCOE, no carbon price		22.77	24.79	34.7	37	50.8 %
Carbon Price per tCO ₂ e	RM 35 (2020/21)	25.77	27.94	36.19	38.46	39%
	RM 50 (2022/23)	27.05	29.29	36.83	39.09	34.7%
	RM 75 (2024/25)	29.19	31.54	37.89	40.14	28.5%
	RM 110 (2026/27)	32.19	34.69	39.38	41.6	21.1%
	RM 150 (2028/29/30)	35.62	38.29	41.08	43.27	14.2%

*Cost in sen per kWh

Quick look: Manjung 5 vs large-scale solar

Note: Figures for LSS 1 and LSS 2 represent an average of the five lowest-cost approved bids in each auction. See Suruhanjaya Tenaga (2016) and Suruhanjaya Tenaga (2017). Estimations for LSS 3 and LSS 4 are based on projections of future LSS costs. See IRENA (2018) and EIA (2019).

Aside on financing costs and the LCOE of RE

- Cheaper access to financing repeatedly found to enhance producer's ability to charge lower levelised tariffs.
- Azhgaliyeva et al (2018):
 - Improved access to loans \Rightarrow higher rate of private investment in RE projects
- Ondraczek et al (2015):
 - Variations in WACC a significant driver of LCOE (solar) across countries
- Monnin (2015):
 - Low interest rates \Rightarrow higher adoption of green technology
 - LCOE (RE) more reactive to Δ (interest rate) than fossil fuels
- Evidence highlights importance of comprehensive national green financing framework

Carbon pricing increases consumer electricity costs

- Cost pass-through (CPT) expected:
 - Fabra & Reguant (2014):
 - Estimate CPT in Spain electricity market following EU ETS
 - Inelastic demand, exercise of market power
 - Results: 77–86% CPT
- Assumption in this study: 90% pass-through
 - Illustrate "worst-case" effects
 - Along with:
 - Max emissions intensities of coal & natural gas
 - Current generation mix (57–40–3)
- Zaid & Graham (2017): per-occupant electricity usage in PPR flats 78–140kWh
 - Used to proxy for low-income households

B40 couple pays carbon taxes <RM8/month in 2021

Carbon pricing encourages adoption of RE

- 1. \therefore over time, effects of tax on rising electricity costs \downarrow
- 2. If RE target of 20% by 2025 reached, marginal price increases 31% lower than estimated in previous slide
- 3. Self-generation (e.g. installing solar panels) also reduces costs
 - Tax can act as incentive to invest and reduce household carbon footprints

III(b). CPR in Malaysia Transport

Taxes should be imposed at the pump

	Emissions	Taxes Incurred at Carbon Price of:				
Transport Fuel	Intensity	RM35	RM50	<i>RM75</i>	RM110	RM150
	in kgCO2 per litre			per tCO ₂	2	
Petrol	2.35	8.22	11.74	17.61	25.83	35.23
Diesel	2.66	9.31	13.30	19.95	29.26	39.90

*Tax in sen per litre

Carbon pricing emphasises importance of fuel economy

Downward pressures on transport emissions

Requirements in Malaysia:

- I. Policies, which:
 - a. Improve fuel-efficiency of vehicles e.g. fuel economy standards
 - b. Encourage hybrid and electric vehicles e.g. tax exemptions, local production
- 2. Investment in:
 - a. Public transportation

 e.g. first/last-mile connectivity, urban and rural
 bus networks and services, increased capacity
 & frequency of trains during peak hours
 - b. Road (re)development
 e.g. improve walkability, encourage cycling, bus lanes.

III(c). CPR in Malaysia Oil & Gas Production Processes

Emissions taxed from oil and gas production

- 1. Emissions from manufacture of oil, and natural gas transformation
- 2. Emissions at petroleum refineries
- 3. Fugitive emissions:
 - Venting & flaring of gas in oil production
 - Production, processing, flaring, transformation, storage, and distribution in natural gas production

Carbon pricing: market-based fiscal incentive for O&G players to mitigate emissions

Oil and Gas Production Process	Mitigation Action(s) Required		
	• Improvements in operations and plant efficiency through fuel consumption		
Natural Gas Transformation	optimisation;		
	Flare reduction and recovery		
Oil Defining	 Improvements in plant efficiency through fuel consumption optimisation; 		
Oli Reining	Flare reduction and recovery		
Fugitive Emissions	Zero continuous flaring and venting in all operations		
Sources: MESTECC (2018); Petronas (2018)			

- Add to this list: carbon capture-and-storage technologies and other carbon sink or abatement strategies
 - Recall π_{max} : abate as long as MAC \leq SCC

IV. CPR in Malaysia Revenue Collections and Redistribution

Carbon revenues ~RM7.8bn in 2021

By 2030, carbon tax to contribute up to 35% of direct tax revenue

Veen	Carbon	Share of Total Tax Revenues in %		Share of Direct Tax Revenues in %		
per tCO ₂ e	BAU	AMB	BAU	AMB		
2020	RM35	4.3	4.0	5.6	5.3	
2022	RM50	6.5	6.1	8.5	8.0	
2024	RM75	10.4	9.7	13.6	12.7	
2026	RM110	16.5	15.0	21.5	19.6	
2028	RM150	24.5	21.3	31.9	27.8	
2030	RM150	26.6	22.3	34.7	29.1	

*As a % of revenue in Budget 2019

B40 carbon rebates would consume 29-47% of revenue

- Central estimate: RM173 annual rebate per individual at RM35 tax
 - I 50kWh monthly electricity usage
 - I6km/L driving ~2,000km per month
 - Requires ~29% of carbon revenue
- Worst-case estimate: RM263
 - 200kWh; 10km/L
 - ~47% of revenue

Carbon rebates can be disbursed alongside BSH

- Rebates act as supplement to Bantuan Sara Hidup grants
- Households can profit from rebates by reducing individual carbon footprints
 - Avoid full brunt of tax but receive full carbon rebates
 - Potential options include:
 - Investment in EE appliances and self-generation
 - Public transport usage
 - Driving more efficient cars
 - Reducing unnecessary electricity usage

Residual revenues can meet Malaysia's climate funding gap within four years – no foreign assistance required

Residual Revenues

Year	Min	Max
2020	4,111	5,284
2021	4,363	5,536
2022	6,606	8,282
2023	6,992	8,668
Total	22,073	27,771

Area	Funding Requirement			
Administrative				
GHG Inventory	24.3			
Management	24.3			
Mitigati	ion			
RE Programs ⁶⁰	11,907			
Energy Efficiency Programs	6,196			
REDD+ Initiatives	1,620			
Adaptation				
Initial Adaptation Measures				
Development of a	421.2			
National Adaptation Plan				
Total	20,169			
Source: MESTECC (2018)				
<i>Notes</i> : MYR/US\$ exchange rate – RM4.05/\$1; REDD+ –				
reducing emissions from deforestation and forest degradation				

Carbon revenues can fund all future climate initiatives

- Sustained climate change mitigation and adaptation initiatives will require ever-larger magnitudes of financing
- Investment in local green industry:
 - Stimulate growth of industries which are centerpieces of sustainable development
- Funding for a national 'Green Financing Framework'
 - Drive LCOE reductions for RE

Paper available for download on Penang Institute website

- I. More detailed breakdown and analysis
- 2. Full breakdown of methodology and assumptions
- 3. References and recommended reading